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ABSTRACT

Three different algorithms—the power series, the asymp-
totic series, and the recurrence relation method—are investi-
gated with special attention to the single (10"14) and double
precision (1072°) of Computer Data Corporation (CDC) 6000
Series computers, The final accuracy of each method depends
partly on the magnitudes of the largest and smallest terms when
floating point additions are involved, Another consideration
is the number of terms required for each algorithm, Combina-
tion of all considerations leads to a partitioning of the order-
argument domain into partially overlapping areas in which each
algorithm is most appropriate. A wedged area not covered by
any of the algorithms remains for large order and argument
of approximately equal size,

Orders and arguments up to 1024 were investigated and
checked where possible., A FORTRAN IV program in the form of
an external function is included.
ADMINISTRATIVE INFORMATION
The particular work addressed herein was supported by the Naval
Ship Systems Command (037) under Program Element 25684, Project S4628,

Task Area S4628-019, Naval Ship Research and Development Center Work

Unit 1932-010,

INTRODUCTION
Three well-known algorithms to determine the Bessel function JL(X)

are:

(1) The power series expansion1 for X/L not too large,.

1Abramowitz, M. and I,A, Stegun (Ed.), "Handbook of Mathematical Functions,"
National Bureau of Standards, U.S. Government Printing Office, Washington,
D.C. (1954), p. 360,




2, The asymptotic series expansion2 for X/L large.
3. The recurrence relation.B’4
The power series converges always., However, for large values of
X/L, a large number of terms is necessary to reach a given precision. More
seriously, the terms initially increase in magnitude, starting to decrease
only after going through a maximum., When the terms are summed by employing
floating point techniques, using a fixed number of significant digits,
the accuracy of the final answer decreases by the same order as the
order of magnitude of the maximum term, In other words, the final
accuracy corresponds to the number of digits available, counted from the
most significant digit of the maximum term,
The asymptotic series has an additional problem. Since it eventu-
ally starts to diverge, the minimum term may not be small enough to
reach the required precision., In that case this method cannot be
applied without further refinements. Even if the required precision
can be reached, the asymptotic series may still be inappropriate because
of the number of terms involved or because of the magnitude of its

maximum term, which affects the accuracy the same way as described for

the power series in the previous paragraph.

2Abramowitz, M. and I.A, Stegun (Ed.), "Handbook of Mathematical Functions,"
National Bureau of Standards, U,S, Government Printing Office, Washington,
D.C. (1954), p. 364,

3Abramowitz, M. and I,A, Stegun, "Generation of Bessel Functions on High
Speed Computers,''Mathematical Tables and Aids to Computation," Vol. II
(1957), pp. 255-257.

4British Association for the Advancement of Science, '"Mathematical Tables,"
Vol. X, Bessel Functions, Part II, Functions of Positive Integer Order,
Cambridge University Press, Cambridge (1952), p., XIV,




The algorithm based on the recurrence relation appears to be the
least sensitive method, The only disadvantage is that the normalizing
factor of the algorithm consists of the sum of all even order Bessel
functions, down from approximately twice the value of the argument. For
large arguments, this number may become prohibitive, The effect of such
long sums on the accuracy of the method has not been determined explicitly
in this paper, but some checks5 showed that the absolute accuracy was
always within three decimals of the machine precision., Usually it was
much better,

The program given in Appendix A applies bounds that are based on
a number of considerations described in detail in the chapters that
follow, These considerations concern the number of terms required and
the magnitudes of the maximum and minimum terms. The precisions for
which the bounds are derived correspond to the single (10-14) and
double (10-29) precision modes of the Control Data Corporation (CDC)
6000 series computers.

Repeated use will be made of a form of the Stirling6 asymptotic
approximation to the factorial:

K+ &

<t~ (B < o K )
e

This approximation is already accurate to 2 percent when K = 4,

5 : .
Hayashi, K, "Tafeln der Besselschen, Theta, Kugel and anderer Funktionen,'

Springer Verlag, Berlin, Germany (1940).

6Fe11er, W., "An Introduction to Probability Theory and Its Applications,"
John Wiley and Sons, Inc,, New York, Vol, I (1968), p. 52,




POWER SERIES EXPANSION
.1

The power series expansion for J_(X) is

less than that precision.

L - 2+L 4L 2K+L
XN XN X /X
3. (F) 7) PR (3) .\ (2
I Ty Tty 0D ey e a
§ ™ / X (X ~2(K-1)+L 7 X ~.>2
Y ) 2. i \.2 (2b)
- L.’ 1+(1+L +(- ) (K=-1) P (R-14+L) ! K(X+L)

The desired precision q is reached when the last term T  becomes
The condition is thus

(3)

<
TK q

where

(4)

. 2K+L 2K+L
(5 > <§ > KHKHL
2 2 e

T T T
K. (K+L). ot K1<+ = (K_I_L)K+L+ =

TK =

Stirling's approximation to the factorial has been used to obtain the
final expression in Equation (4)
Instead of solving for the K that satisfies Equation (3), it takes

in general less computer time to test if the last term T, has indeed

reached the desired precision q




The precision of the last term does not guarantee the accuracy of

the final answer. The magnitude of the maximum term may be several orders
of magnitude larger than one, so that an equal amount of accuracy is lost
in the final answer of this alternating sign series if floating point tech-
niques are employed. Therefore, the term with the largest magnitude must
be determined., This term occurs when the incremental multiplier in the
last term in Equation (2b) first becomes less than one:

X 2
SO .

K(K+L)

This implies that
X?/4 <K® + KL

or
K > K, (6)

where

K, = - 3L + & /1% + x° (7)

The magnitude TK of this maximum term follows from Equations (4) and (7).
1

< Xe >2K1+L ( Xe >2
_ 2 _ 2

'y = » T
2 (K, (K1+L)]K1+ 2(K1+L)L 2r[ (- 3L+ 3VLP4x3) GL+ g¢LE’+x2)]K1+ g(1<1+L)L

TK,

~ 2K 4L
X 1
- <;§ ) exp (-I4/LE+X°+L) _ exp[X/ (L/X)2 + 1] (8)
2K,+1
UL+ VIPROY ax(u/x + /@0 + 1

2 (3)

The behavior of the magnitude of the maximum term T of Equation (8)

Ky

is shown in Table 1,




TABLE 1 - MAGNITUDE T

OF MAXIMUM TERM IN POWER SERIES OF JL(X)

Ky
X 1 10 100 1000
L
1 0.5 (K=1) 600 (K=5) 10%* (K=50) | 10*®' (K=500)
10 1077 (r=1) 6 (K=2) 10%° (K=45) | 10%*2° (R=495)
100 107°%7 (k=1) | 107°% (k=1) 10%° (K=21) | 10*?° (K=452)
1000 0 (K=0) 0 (k=1) | 107°°° (k=2) | 10%?® (k=207)

A more detailed table is

given in Appendix B,

If a loss in accuracy

of no more than two or three decimals is required, the maximum term must

be less than 10°*® or approximately 300,

ASYMPTOTIC SERIES EXPANSION

The asymptotic series expansion for JL(X) is

with

2
P(L,X) ~ 1- (4L

Q(L,X) ~

-17) (41.2-3%)

(412 -13) (412 -3%) (41.2-5°) (4L2-77)

3, (X) A\ /% [P@L,X) cos ¥ - QLX) sin Y]

27 (8X)7

41 (8x)*

(412-1%)  (412-17) (41.2-3%) (41.2-5°)

1! 8&

Consider the term

3. (8x)°®

+ oo

(9)

(10)

(11)




| [(2L)%-1%1[(21)2-3%)- .. [ (2K-1)® -(2L)?|

RK(L,X) = R (12a)
K! (8X)
| (2k-1)2 -(21)?]
= R 0 gy az»)
These terms decrease as long as
| (2k-1)® -(21)3| 13
K 8X (13)
This yields
41° - 4K° 4+ 4K - 1 - 8XK < 0
and 4K° - 4K+ 1 - 4L° - 8XK < 0 (14)
Solving Equation (14) gives for the interval of K for which the terms
RK decrease from maximum to minimum magnitude
Ka <K <Ky (15)
where
Kg = - #(2x-1) + &V (2x -1)® + 412 - 1 (16)
and
Ky = #(2%+1) + 3 V(@2x+1)? + 412 - 1 (17)

It is obvious that Kz <L < K, so that Kz - L and L. - Kz are both
positive, a fact that will be used in the four following equations,
From Equation (12a) it follows that the Kth term, if K > L, can be

written as




[ (14+21) (34+21)« « (2K-14+21) ][ (21.-1) (21.-3),.3.1.1.3.. (2K-1-2L) ]
K (8x)K

R (L,X) =

(2K+21) ! L! (2Ly!  (2r-21)! 1
@L)! 2K (k) ! 2L LY 2K-L (kL)' K! (8x)K

(2K+2L) ! (2K-2L)! 1
(L) (x-1)! 22K

2 R 3k (K > L) (18)

Similarly, for K < L

[(2L + 1) (2L+3).. (2L4+2K-1)1[ (2L-1) (2L-3). . (2L-2K+1) ]
K! (8x)K

Ry (L ,X)

_ (2L42K)! L. 2L)! @©-x)! 1 1
To2L)! 2K (14K)! (2L-2K)! 2K L! K! (8X)K

C@LEK)! @-K! 111
= @R)! (2L-2x)! 25K X! (K <L) (19)

Using Stirling's formula, we find asymptotically

K-L
(1) S x-1) K2 -L2 K+L
Re(@,%) = *K KK K K \/:tK K2 Xe )( K > 1) (20)

and

wom - e G (Y e

By substituting Ky and Kz from Equations (16) and (17) in Equations
(21) and (20), respectively, we obtain the maximum and minimum magnitude

of the asymptotic terms, The minimum term should be within the precision




required of the answer, while the accuracy is determined by the number of
decimals lost in floating point arithmetic, i,e,, by the order of magni-
tude of the maximum term RKg'

If either of these requirements cannot be met, a different algorithm
must be used,

Tables of terms with maximum and minimum magnitudes are given in

Appendix C,

RECURRENCE RELATION

. . . 3,4
The recurrence relation for Bessel functions is™’

2L
30 =53 () - I (22)

with the normalization constraint

©
JO(X) + 2 E: JZN(X) =1 23)
N=1

The algorithm based on this recurrence relation starts with setting
JL+1(X) equal to zero and JL(X) equal to a (small) constant, A running
count is kept of the normalizing sum, Equation (23). The final answer
is obtained by dividing the value resulting from the recursive iteration
by the normalizing factor., The method is remarkably insensitive to the
starting point and the starting value, It is advisable to start the
recursion at an order L for which JL(X) equals approximately the desired
precision q, which is usually the machine precision available,

This starting order is readily estimated from the power series

expansion given by Equation (2b):




X \} L
2 /” 1 ’ Lei ) -
=5 (3 J =4 (24)

and, again from Equation (2b),

(3 25)

L <1

The latter inequality ensures that the series in parentheses in Equation
(2b) converges from the start. Since the normalizing factor of Equation
(23) has to be carried all the way down to the zero order function JO(X),
a too high starting order may be computationally unacceptable; however,
in that case an asymptotic expansion may already perform well, An
additional advantage of the recurrence relation method is that function
values for all integer descending orders may be obtained by the same
effort,

Estimates based on Equation (24) for the starting order L of the
recurrence relation of Equation (22) are given in Appendix D, TFrom the
results of Appendix D it follows that L=1.4X + 25 (for single precision
q=10-14) or L=1,6X + 40 (for double precision q=10-29) are good estimates
for starting orders of the recurrence relation algorithm for values of X
up to 200, In general, one would not like to extend the recursion over
more than 200 terms, in the first place because of possible loss of
accuracy involving the normalizing sum of Equation (23), and in the second -
place because of computational efficiency, From the requirement that L
be less than 200, we can derive the requirement that X be less than 125
(for single precision q=10-14), or that X be less than 100 (for double

precision q=10—89).

10




How accurate the obtained results are for orders close to their

starting order could not be established exactly, but it is probab}y close
to or better than the.machine precision, Where the values oBtained by the
recurrence relation algorithm could be checked against Reference 5, it was
generally found that they were more accurate than the corresponding values
obtained by the power series or asymptotic series algorithms, which

always suffer from the loss of accuracy due to the magnitude of the maxi-
mum term occurring early in this alternating series, as was explained in
the previous chapters,

The high accuracy obtained by the recurrence method over the full
range of orders L, together with the simplicity of the algorithm itself
(three multiplications and two additions per step, following by two memory
exchanges) , makes the recurrence relation algorithm very attractive for
the computation of JL(X). For this reason, some of the boundaries indi-
cating when the power series expansion and when the asymptotic series
expansion can be used may be relaxed with respect to the results from
Appendices B and C, The boundaries actually used in the program are given

in the next chapter,

ORDER-ARGUMENT DOMAIN COVERED BY ALGORITHMS
The three algorithms into which the calculation of the Bessel func-
tion JL(X) is divided occupy the following regions in the order—argumeﬁt
(L-X) domain:
1, Power series expansion when

X less than 1 or X less than 3L .

11




2, Asymptotic series expansion when:

X greater than 50 and X greater than %Lz (for mach.prec.lO-zg)

or X greater than 30 and X greater than 112 (for mach.prec.lO-lé)

3. Recurrence relation method when:

X less than 100 and L less than 200 (for mach.prec.lO-zg)

or X less than 125 and L less than 200 (for mach.prec.lo-lé).

The coverage of the different algorithms is shown graphically in
Figure 1, A wedged area uncovered by any of the algorithms remains for
large orders and arguments of approximately equal magnitude,

Outside the rectangular area in the L-X domain for which the recurrence
relation algorithm seems indicated, the boundaries for the power series and
asymptotic series expansions could be tightened again, but this has not
been attempted in the program presented in Appendix A, Instead, the pro-
gram notifies the user of any entries into this forbidden zone, but returns
with a Stirling approximation to the first term in the power series - which

may be completely wrong - as an exit value,

CHECKING THE RESULTS

To check the accuracy of the algorithms, Bessel functionsJL(X) were
calculated by the recurrence relation method for arguments from 1 to 10
in steps of 1, and from 10 to 100 in steps of 10, The region covered in
the L-X domain in this way is pictured as the hatched area in Figure 2,

Also indicated in Figure 2 are the points in the L-X domain for which
values of the Bessel function were calculated by the power series expansion
or by the asymptotic series expansion., The values of L and X were chosen

close to the boundaries assumed by the FORTRAN program of Appendix A,

12




The required accuracy -~ three decimals less than the machine pre-
cision — was indeed obtained; this is in accordance with the predictions of
the previous chapters, The accuracy obtained by the recurrence relation
method was generally better,

Some of the results obtained are given below,

Jo(l) (Ref.5) 0,76519 76865 57966 55144 97175 26103
(recurrence rel,) 2612
(power series) , 2604

JO(IO) (Raf,5) =0,24593 57644 51348 33519 77608 62485

(recurrence rel,) 6253
(power series) 4585
J, (1) (Ref,5) 0,44005 05857 44933 51595 96822 03719
(recurrence rel,) 0372
(power series) 0367

J, (40) (ref.5) 0,12603 83180 37584 99920 56027 21839
(recurrence rel,) 2185

(asympt, series) 2179

J, (50) (Ref.5) =-0.09751 18281 25175 13766 14589 53873

(recurrence rel,) 53721
(asympt, series) 53782

J16(50) (Ref.5) 0.00489‘ 81607 77813 78173 17342 69265

(recurrence rel,) 68979
(asympt,series) 69234

Jso(l) (Ref. 5) .041 3482 8697

(recurrence rel.) 3482 86979 42514
(power series 3482 75946 71184

J (64)ﬁ .0 3241 50085 84477 63106

128 26

(recurrence rel,) 3241 50085 84477 63102
(power series) 3241 82782

%

From a 60-term power series expansion; also from a recurrence relation

calculation starting at J o0 (64).

13




The results given here show for example that JO(IO), when computed by
using the power series expansion algorithm, is accurate only to 25 decimal
places, This is consistent with the fact that the maximum terms
(T4=Ts=678=102’83, see Table 4 in Appendix B) decrease the accuracy by
almost 3 decimal places, WNote that the program of Appendix A would have
chosen the recurrence relation method to compute Jo(lo), giving a result
that is accurate to 28 decimal places,

Taking JlB(SO) as another example, we can derive from the chapter on
coverage of the L-X domain that the program would again have chosen the
recurrence relation algorithm, The asymptotic series algorithm would in
this case have been slightly more accurate, but both results are good to
more than 26 decimal places as was desired.

Jao(l) begins to show a difference at the fifth significant digit of
the power series result, This is because of the fact that the algorithm
takes one more term after detecting that the machine precision has been
reached, which in this case is the very first term, The third term is 3x10™°
times the first term and this accounts for the difference,

The last result, J128(64), again would have been calculated by using
the recurrence relation method; according to the rule of thumb given in
Appendix D, the recursion starts with L = 1,6x64 + 40 = 142, i,e,, with

Jl42(64) =0 and J_, . (64) = 10-29. The maximum term in the power series

141
-20.4
expansion is T, = 10 according to Table 4 in Appendix B, so no loss

of accuracy is expected from this effect, However, the summation of the

power series algorithm ends when the terms become smaller than

14




1072° (=T30 approximately); we find indeed that the power-series result
is accurate to 30 decimal places, By continuing the power-series expan-
sion further (to 60 terms), the more accurate result of the footnote on

page 13 was obtained,
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results,
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APPENDIX A

FORTRAN IV PROGRAM

The FORTRAN IV program is used to compute Bessel functions of the first
kind of positive integer order and positive argument,

The program is written as a double precision function, with indications
of the changes involved when a single precision program is desired. The
program has been checked on the NSRDC CDC 6700 system,

The calling sequence, variable parameters, and options are explained

in comments at the beginning of the program.
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DOURLE PRECISION FUNCTION DRSL(LPeXP+IOPT)

BESSFL FUNCTION J(LeX) OF NON=NEGATIVE INTFGER ORDER L
AND NON=-NEGATIVFE ARGUMENT X

- .t D I h G P En T s TP G G G D S TP v e ST M e e T R WD N e i SO B D ) e G R e M S I W G WD e e e G D P W W ae

INTEGER LPoIOPT oL o ISWeIXaIMeTaKoeKKeKMoLL ol Pl oM

REAL ALM14TX

PDOURBLE PRECISION XPeXeMACHEP ¢PT eSeS2sY 7077

NOUBIE PRECISION AJeAJMIoAJL sAJLPL o AL sALF o ALK 4 AM4 AKK

INTEGER TABRS. RFAL SQRT. DOURLE PRECISION DABS4NDCOSNSINDSORT,
ARSOLUTE VALUFES OF L AND X ARE TAKEN HY THIS PROGRAM,

X=DARS (XP)

L=TARS(LLP)

- o G T S - G s i T GE P W e D P e e e YD W G M T G e T R T D R e e . P D I e e D D e g A G S D G NS S G G D D WD G TED wat

MACHEP IS A MACHINE PRFECISION PARAMFTER. CHANGFS AFFECT LINES
279689729 AND 86 IN THIS PROGKRAM,
MACHEP=2 4 ## (=97)

- A S D S U o e WP S W - P . - W e D TS W e e S T D G A M I A Gl G 00 e g S S W WS e S Y G = -

THE FOLLOWING OPTIONS ARE AVAILABLE

I0PT = 1
ALGORITHM IS RASEND ON RECURRENCE RFLATION
JU=TeX)=(2L/X)#J (Lo X) = J(L+19X) e STARTING WITH SUFFTICIENTLY
HIGH L FOR WHICH APPROXIMATELY J(L «X)=MACHEPs AND J(L+19X)=0,
AND NORMALIZED BY THE SCALING FACTOR S=J(0eX) +2#SUML (J(2LeX) ) o
WHICH SHOULD HAVF EQUALED ONE FOR THE RIGHT VALUES OF Je.

I0PT = 2
ALGORITHM TS BASFD ON POWER SERIES EXPANSION
SUMK ((=1)##K #(X/2)#3#(2K+L) /(KFACT*(K+L)FACT) )

I0PT = 3
ALGORTITHM IS BASED ON ASYMPTOTIC SERIES EXPANSION
SQRT (27 (PI#X)) #(P(LeX)COS(ALF) = Q(L+X)SIN(ALF) )+ WHERE
ALF=X = (+S5L+425)PIy ANDs ASYMPTOTICALLYs WITH MU= (2L) #%#2
P(LeX)=1 = (MU=1) (MU=9)/(1%#2 #(BX)#¥2) + .44
QLo X)=(MU=1)/(1 #(8X)) = (MU=1) (MU=-9) (MU=25)/(]1#2#%3 #(8X)*#3))

(=1)##INT(K/2)#(MU=1) oo (MU=(2K=1)3#%#2) / (1#23, 3K #(8X) #¥K) +,,

TOPT = NOT EQUAL TO 12 OR 3
ALGORITHM DETERMINES MOST SUITABLF OF ABOVE ALGORITHMS, RUT
MAY LEAD TO UNSATTISFACTORY RESULTSe ESPECIALLY TF L AND X
ARF. OF SAME ORDER AND LARGER THAN 100.

- B e S S M U S G S W R G W G M T T grs G TS e e S GE M O S e T MY P G Gt e MR G e e RO pan T W G e WS W S G CE v




e —

PT=431415926535897932384626433833D+01
AL=L
AX=X
IX=AX
60 TSW=10PT
IF (ISW.l.LE.0) ISW=4
IF (ISWeGF %) 1SW=4
GOTO (10e20+30940) s ISW

C
65 € |  mememm e e e e e - ————
C
C 40 FINNS MOST SUITABLF ALGORITHM T+ POSSIRLE.
40 TF (IXaGF 450 oAND, 4#IX GELL#L) GOTO 30
C INFQUALTTY MAY BE REDUCED TO
70 C TXeOF 30 ¢ANDe 43#TX GE,L#L. I+ MACHEP=2#3%(-47),
TF (ITXalTal 4026 PHIXeLToL) GUTO 20
IF (TXel.Tal00 ANDe LeLTe200) GOTO 10
C INFQUALTITY MAY BFE INCRFASED T0O
C IXelT6125 oANDe LoLTe200 IF MACHFEP=2%#(-47),

75 WRITF (6415)
SIGNALS THAT NO SUITARLE METHOD IS AVAILARLE. RUT PROVIDES

STIRLING APPROXIMATION TO FIRST TFRM OF POWER SERIES,
15 FORMAT (13H WRONG BESSEL)
S=(AX¥]1435914009142/7A1) #3#AL/SQRT(6.283185307#AL.)
80 GOTO 47

loNe!

.t S ST et - e U B T P S S e e W TP pum My T M (mn v PGS D G G Y e T T G am Smp gmp A SER it R G S S G . - . W SEP S AN g

OO ODH

10 RECURPENCE RELATION,
85 10 LPI=l+1
KK=(8%IX) /5 + 40
FINDS ORDER L. FOR WHICH APPROXIMATELY J(LeX)=MACHFP, BFCOMES
KK=(7#IX)/5 + 25 IF MACHEP=2%##(-47).,
K=23# (KK/2)~1
90 C STARTS NORMALIZING SUM S (OF TERMS OF EVFN ORNDER) WITH
C HIGHEST MON=7EROQ TERM,
ANP1=0,
AJL=MACHEP
S:O.
95 NO 23 I=1sKe?2
LL=K=T142
AL=1L
ANMI=AJL#2 AL/X - AJLPI
AJLPLI=AJL
100 AJL=AJIM]
TF (LL.FQ.LPL1) AJ=AJL
LL=K=T+1
AtL=LL
AJLMI=AJL#2 #AL/X -~ AJLPI]
105 S=S+AJLLP]
C ANDS THE NEXT LOWFER FVFEN ORDFR TERM TO THE NORMALTZING SuUM S,
AJILPL=AJL
AJL=AJIM]
IF (LLEQ.LP1) AJ=AJL
110 23 CONTIMUF

aOn

20




115

120

125

130

135

140

145

150

155

160

OOO0

20
20

@]

57

C 30
30

77

S=P«#S+AJL

COMPLETFS THE NORMALTZING SUM S=J(0+X) +2%SUML{ (Pl e X)) &
S=AU/S

GOTO 47

POWIER SERTES EXPANSION.
Y=X/?e

ALleo

IF (L.EQe0) GUTO 37

NO 33 IM=1.L

AM=1M

ALF=ALF#*AM

ALF IS (K+L)=-FACTORTAL. NOW SET UP FOR AND EXFCUTE SUMMATION,
7=1+/ALF

=7 %Yk

S=7

KK=]

AKK=KK

ALK=L +KK

Z==7%Y#Y/ (AKK#ALK)
S=S+/

772=DARS(7)

TF (Z7«L.T<MACHEP) GOTO 47
TF (KKeGE«60) GOTO 47
KK=KK+1l

GOTO 57

- T - T G - e - - D Y S e TP o ot VD M B ooy > TP G BB G e RS D o s s TR s Gun MY M A G e S TP M A e W

ASYMPTOTIC SERIES EXPANSION,
Y=8,3%X

ALMY =42 # -1

TX=P%X%+],

KM= 53# (TX+SQRT{TX#TX+ALML) )
FINDS MINIMUM TERM IN CASE IT OCCURS BEFORF MACHEP IS REACHED,
AM=gG 3| 3t

=1

S=1.

S2=0.

KK=1

AKK=KK

M=zt KK#KK = 4%KK + ]

ALK=M

7=7% (AM=ALK) / (AKK#Y)

SP2=S2+/

IF (KK+1.GF«KM) GOTO 167
AKK=KK+]

ALK=M + g#KK

21
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ASYMPTOTIC SERIES TABLES
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APPENDIX D
RECURRENCE RELATION TABLE

TABLE 9-BESSEL FUNCTIONS WHOSE MAGNITUDE APPROXIMATELY EQUALS
MACHINE PRECISION

(Fast rule: L ~ 1,4X + 25, mach. prec, 107**; L =~ 1,6X + 40,
mach, prec. 10729)

X L | Log J(X) X L |Log J.(X)
1 13 -12.7 1 23 | -28.3
10 34 -13.5 10 50 | -28.3
20 51 -13.9 20 70 | -28.8
30 66 -13.8 30 87 | -28.6
40 81 -14.0 40 | 103 | -28.6
50 95 -13.8 50 | 119 | -29.0
60 | 109 -13.7 60 | 134 | -28.9
70 | 123 -13.7 70 | 149 | -29.0
80 | 137 -13.8 80 | 163 | -28.7
90 | 151 -13.8 90 | 178 | -29.0
100 | 165 -13.9 100 | 192 | -28.8
200 | 302 -13.8 200 | 332 | -28.8
400 | 575 -14.0 400 | 607 | -29.1
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